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ABSTRACT
We propose a deep convolutional neural network named EDGENet to estimate rough line edge posi-
tions in lowdose scanning electron microscope (SEM) images corrupted by Poisson noise, Gaussian 
blur, edge effects and other instrument errors and apply our approach to the estimation of line edge 
roughness (LER) and line width roughness (LWR). Our method uses a supervised learning dataset of 
100800 input-output pairs of simulated noisy SEM rough line images with true edge positions. The edges 
were constructed by the Thorsos method and have an underlying Palasantzas spectral model. The 
simulated SEM images were created using the ARTIMAGEN library developed at the National Institute 
of Standards and Technology. The convolutional neural network EDGENet consists of 17 convolutional, 
16 batch-normalization layers and 16 dropout layers and offers excellent LER and LWR estimation as 
well as roughness spectrum estimation.

1. Introduction
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Figure 1.  A noisy SEM 
image of dimension 64 
x1024. The image has 
one line with two edges. 
The aspect ratio of the 
image has been scaled 
for a better view.

The measurement of line-edge roughness and line width roughness (LER, LWR) 
is necessary to understand and control semiconductor device performance 
and the yield of the manufacturing process. The scanning electron microscope 
(SEM) is often used for the roughness measurements. Low-dose SEM images 
are potentially attractive because of relatively small acquisition times and resist 
shrinkage. However, to determine the edge geometry from such images requires 
techniques to account for Poisson noise, Gaussian blur, edge effects and other 
instrument errors.1,2 One could use algorithms based on filtering3 ror physical 
model-based regression.4,5 The filtering based methods often require careful 
selection of the filter parameters to prevent changes in the edge geometry while 
model-based regression is constrained by the modeling assumptions. Therefore, 
the algorithmic problems associated with the extraction of edge geometries in a 
high-volume manufacturing setting continue to be investigated.

While a single number is often used to characterize LER or LWR, that one 
number does not capture all interesting features of a rough edge or width.6,7 
The power spectral density (PSD) analysis of edge or line roughness offers more 
detailed information6 and is useful for process monitoring8,9 and understanding 
aspects of transistor performance.10 It is difficult to accurately estimate the power 
spectrum of a rough edge or line from a low-dose SEM image because of the 
artifacts that corrupt those images.6,7 Therefore, new techniques to automate the 
estimation of edge geometries and to improve the accuracy of power spectrum 
density estimates are potentially useful for semiconductor manufacturing.

We propose the use of deep convolutional neural networks (CNNs) as they 
have had widespread application11 and success in image processing12,13 and clas-
sification problems.11,14 Motivated by the success of the DnCNN12 blind Gaussian 
denoising algorithm on natural images, we recently introduced and showed the 
superiority of the convolutional neural network SEMNet15 for the Poisson denois-
ing of SEM rough line images with unknown noise levels; we used the Canny 
algorithm on the denoised image to complete the edge detection procedure.
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Addressing the bifurcation of the 
photomask industry
Peter Buck, Mentor Graphics
The combined conferences of Photomask Technology and EUV Lithography 
were held last month in Monterey, California. Attendance was about 10% 
higher than in 2017 at approximately 580 total attendees. This is a good 
number for the venue, the recently rebuilt Monterey Convention Center, 
and the conference felt just right – crowded enough to confirm that the 
conference was alive and well but not so crowded that a seat was impossible 
to obtain for someone entering the conference rooms late. The eBeam 
Initiative presented an optimistic overview of the mask industry business 
assessment with strong growth at all technology nodes. Behind the scenes, 
though, the picture was more complex. At the Steering Committee breakfast 
meeting we were confronted with the fact that the number of abstracts 
submitted to each of the two conferences continues its steady decline - 58% 
in the last decade. While the technical focus of the conference has been 
EUV lithography, a look at the abstract contributors reveals that of the six 
companies most likely to deploy EUV lithography, there were only seven 
abstracts submitted. Of these, six were submitted by GLOBALFOUNDRIES. 
Based on their publically announced decision to pivot away from 7nm it is 
unlikely we will see any EUV abstracts from GLOBALFOUNDRIES next year. 
This presents a challenge to the conference steering committee – how to 
continue to present a forum for advanced photomask technology even if 
the companies who need EUV to be successful do not participate, while in 
addition serving the broader industry needs.

Perhaps the answer is to rebalance the photomask portion of the conference 
towards the vast majority of photomasks that are not EUV. The eBeam 
Initiative survey showed that even without any input from TSMC, the total 
annual mask volume has increased to about 600,000 masks. Of that total 
only ~2200 were EUV masks. The segment of 130 nm and above grew 
by about 24,000 masks while the total number of laser writer produced 
masks increased by ~100,000. This industry is as healthy as it has ever 
been, to the extent that capacity is now a problem. In a talk at the eBeam 
Initiative reception Tuesday evening, Franklin Kalk of Toppan Photomasks 
projected a near-term mask writer equipment shortfall of up to 100 tools 
as equipment as old as 30 years finally goes out of service, while at the 
same time demand for photomasks continues to grow. The urgent need 
for new, cost efficient photomask manufacturing equipment at all levels 
of technology provides opportunities for technology innovation to meet 
these challenges for companies willing to think creatively. The Photomask 
Technology conference can continue to serve by adapting to the changing 
needs of our industry as it has done for over 30 years. The co-location and 
coordination of the Photomask Technology and EUV Lithography conferences 
provides an infrastructure to continue to support both advanced and mature 
technology needs as the photomask industry continues to expand both in 
depth and breadth. To be successful, WE – all of us – need to participate with 
contributions that break beyond the traditional bleeding edge of resolution! I 
look forward to seeing all of you at the 2019 conference.



Here we propose a new deep convolutional neural network named 
EDGENet which inputs a SEM rough line image corrupted by an 
unknown level of Poisson noise and directly outputs the estimated 
edge positions. EDGENet uses the same set of 100800 noisy line 
images as SEMNet15 for training and testing purposes. The edge 
dataset was created using the Thorsos method16,17 with an underlying 
Palasantzas18 spectral model and many combinations of parameters 
for LER, correlation length and roughness exponent. These edges 
were input to the SEM simulator ARTIMAGEN19,20 to generate noisy 
images. EDGENet automatically learns to recognize the edge position 
in a variety of edge geometries and noise levels and provides excellent 
measurement accuracy.

The remainder of the paper is organized as follows. In Section 2, 
we discuss deep convolutional neural networks and the proposed 
EDGENet architecture. In Section 3, we discuss the dataset and the 
proposed methodology. In Section 4, we show the accuracy of LER/
LWR estimation and edge spectra results. In Section 5, we conclude 
the paper.

2. Deep Convolutional Neural Networks 
Machine learning has improved significantly in the last decade. Ma-
chine learning algorithms can be broadly classified as either unsu-
pervised machine learning algorithms or supervised machine learning 
algorithms. Unsupervised machine learning algorithms find structure 
in the input data without a known or expected output. In supervised 
learning pairs of input-output data points are available and the objec-
tive is to find a relationship in the pairs. We developed EDGENet by 
using supervised machine learning.

Given a collection of N input-output vector pairs (Xi; Yi) the first step 
in supervised machine learning is to choose a model or a parametric 
function f(X) which is complex enough to describe the relationship 
between the input and output pairs. For example, a linear function 
with a variable weight matrix W and a bias vector b term has the form

The next step is the selection of a performance criteria or a loss term, 
and two widely used criteria are the mean squared error (MSE) and 
the mean absolute error (MAE)

Given these selections, the goal is to optimize the parameters of func-
tion f(X) over the N input-output pairs.

We often wish to consider nonlinear functions in relating the inputs 
and outputs, and neural networks can express a useful collection 
of nonlinearities through compositions of layers or simple nonlinear 
functions. The rectified linear unit (ReLU)21 is a popular component in 
neural networks;

The nonlinear relation obtained by composing the linear function hav-
ing weight matrix W1 and bias vector b1 with a rectified linear unit is

A two-layered neural network can be formed by passing the output 
of previous relation through a linear transformation with weight matrix 
W2 and bias vector b2.

A three-layered neural network can similarly be formed with an ad-
ditional weight matrix W3 and bias vector b3.

The preceding “fully connected” layers allow an arbitrary choice of 
weight matrices, and for image processing applications the optimi-
zation problems often are computationally infeasible. This issue was 

Figure 2. The 17 convolutional layers of EDGENet, which inputs a noisy SEM image of dimension 64x1024 and outputs a vector of dimension 2x1024.
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addressed through the introduction of convolutional layers22 in which 
the input and output of a layer can be represented by 3-dimensional 
tensors or volumes. A convolutional layer replaces a weight matrix 
with a set of filters with variable weights. The input tensor is convolved 
with these filters to generate an output tensor23 with depth equal to 
the number of filters in the convolutional layer. Convolutional layers 
significantly reduce the number of weights in a layer and take advan-
tage of the spatial information within images.

The depth of a neural network refers to the number of layers in the 
network.21 Deeper networks can solve more complex tasks14,21 because 
they incorporate more nonlinearities and can express more complex 
relationships. Deep convolutional neural networks underlie most recent 
success stories in machine learning11,14,21,24 such as learning image 
features11,14,21 in image classification problems, learning game states 
and strategies24 in deep reinforcement learning problems and learning 
inverse problems like the denoising of images.12,13 Multiple strategies 
have been developed to improve the training process and the accuracy 
of deep convolutional neural networks such as the development of 
better stochastic gradient descent25,26 algorithms, the use of the ReLU 
nonlinearity21 and the use of dropout27 and batch-normalization28 layers.

2.1 EDGENet
Our neural network EDGENet predicts two line edge positions from 
a 64x1024 noisy SEM image with pixel size 0:5x2 nm and contain-
ing one rough line as shown in Figure 1. The output of EDGENet is a 
2-dimension matrix of size 2x1024 which contains the left and right 
edge positions of the line. EDGENet has seventeen convolutional layer 
with filter dimension of 3x3 and depth dimension equal to the depth 
of the input volume or tensor. The first four convolutional layers each 
have 64 filters, the next four convolutional layers each have 128 filters, 
the following four convolutional layers each have 256 filters and the 
subsequent four convolutional layers each have 512 filters. The last 
convolutional layer only has one filter. Figure 2 illustrates the output 
volume or tensor obtained after each convolutional layer.

In addition to these convolutional layers, EDGENet also applies one 
batch-normalization and one dropout layer after each of the first 16 
convolutional layers. EDGENet has a total of 17 convolutional layers, 
16 batch-normalization layers and 16 dropout layers. We selected 
dropout probability of 0.2 in all EDGENet dropout layers. EDGENet 
has 10,972,993 total parameters out of which 10,965,313 parameters 

Figure 3. Training loss.

Table 1. Edge results for 1024 edge positions.
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are trainable; the 7,680 non-trainable parameters are associated with 
the batch-normalization layers.

3. Simulation and Training Dataset 
EDGENet applies the same set of 100800 noisy line images as 
SEMNet15 for training and testing purposes. The edges each have 
length 2.048 microns, consist of 1024 pixels, and have an underlying 
Palasantzas spectral model. In the Palasantzas spectral model18 the 
power spectral density (PSD) is denied by three parameters: the line 
edge roughness s, the correlation length x and the Hurst/roughness 
exponent a.

To construct a dataset with a wide variety of edge geometries we 
used eight choices for LER (s = 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 
nm), nine choices of roughness/Hurst exponent (a = 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9), and 35 choices of correlation length (x = 6, 7, 
..., 40 nm). We used the Thorsos method16,17 to generate eight edges 
for each combination of parameters and combined pairs of edges to 
create rough lines of widths 10 or 15 nanometers. These 10800 lines 
were input to NIST’s SEM simulator ARTIMAGEN to generate images 
of dimension 64x1024 pixels with pixel size 0:5x2 nm. We added the 
artifacts of random backgrounds, a fixed edge effect, fine structure 
and Gaussian blur using the features of the ARTIMAGEN19,20 simulator. 

We generated ten noisy images from each initial image by corrupting 
the latter with ten Poisson noise levels which are {2; 3; 4; 5; 10; 20; 
30; 50; 100; 200} electrons per pixel. From this process, we formed a 
supervised learning dataset of noisy input images and output arrays 
of dimension 2x1024 with edge positions.

4. Experiments and Results 
The simulated dataset was divided into a training set, a validation set 
and a test set. The test set consisted of the 8640 noisy SEM images 
and edge arrays with correlation length x in the set {10; 30; 40} nm. 
The validation set consisted of the 2880 noisy SEM images and edge 
arrays with correlation length x = 20 nm. The training set consisted 
of the remaining 89280 noisy SEM images with output edge arrays. 
EDGENet was trained with a Tesla K80 GPU and an Intel Xeon E5-2680 
v4 2.40GHz node. EDGENet was created and trained using the Keras29 
library with the Tensorflow30 library backend in the python program-
ming language. We used a batch size of 8 noisy SEM images with 
edge arrays. All SEM image inputs and edge arrays were normalized 
to have values in the range (0,1). We chose the Adam26 optimizer with 
a learning rate of 0.001 as our stochastic gradient descent algorithm. 
One epoch of training means running the stochastic gradient descent 
algorithms on the entire training set of 89280 noisy SEM images and 
edge arrays. EDGENet was trained for four epochs and the training 
time was approximately 45 hours and 30 minutes. We chose mean 
absolute error (MAE) as the loss function because it is better than 

Figure 4. (a) Original image with s = 1:6 nm, a = 0:5, x = 30 nm (b) Noisy image with a noise level of 2 electrons per pixels. (c) Predicted edge 
image. (d) Noisy image overlayed with edge image. (e) Left edge PSD; Palasantzas (blue), true edge (orange), predicted edge (green). (f) Right edge 
PSD; Palasantzas (blue), true edge (orange), predicted edge (green).
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edge positions predicted by EDGENet. We estimate the power spec-
trum from N = 1024 point edge positions using multitaper31,32 spectrum 
estimation with six Slepian sequences, bandwidth W satisfying NW = 
4, and adaptive weights. The resulting power spectral density (PSD) 
estimates for the edges generated from the Thorsos method and the 
corresponding predicted edges from the simulated test SEM images 
have been plotted together with the underlying Palasantzas power 
spectral density. Observe that for all three test images the predicted 
edge’s PSD estimate closely matches the original edge’s PSD estimate. 
For the first two test images the deviations from the Palasantzas PSD 
arise because we consider a single predicted edge per plot as opposed 
to the average of the multitaper estimates from multiple edges. The 
large difference between the Palasantzas PSD and the original and 
predicted edge PSD estimates in the low frequency regions of Figures 
6(e) and 6(f) arise because the edge roughness parameter (0.8 nm) is 
close to the pixel width (0.5 nm).

5. Conclusion and Future Work 
Deep supervised learning offers an effective method for finding the 
edge positions in SEM images corrupted by Poisson noise. The next 
step of this research is to predict nanostructure geometries from a 
larger class of SEM images. Since deep convolutional neural networks 
are effective at learning complex physical processes they have the 
potential to advance the field of semiconductor metrology.

MSE in penalizing all edge position errors as opposed to large edge 
position errors.

Figure 3 plots the mean absolute error training loss as a function of 
the number of gradient descent steps in the Adam optimizer algorithm. 
The loss tends to decrease as the number of training steps increases. 
Further analysis of hyperparameters like the learning rate, the batch 
size and the number of epochs can potentially improve the training 
process. We saved the weights associated with the EDGENet model 
in a file of size 125 MB. This model le was later used to predict the 
line edge positions from the noisy SEM images in the test set. The 
average prediction time per image of EDGENet without including the 
time to load the model was approximately 2.4 seconds on a central 
processing unit.

We consider a few performance metrics to assess the quality of 
EDGENet on the test image dataset. Table 1 species three images and 
four Poisson noise levels and examines how these parameters affect 
the estimation of LER, LWR, and a metric from Ref. 15 named the mean 
absolute pixel error (MAE), which averages the absolute edge position 
estimation error measured in pixels over 2048 edge positions per line. 
Observe that even in the high noise regime the estimates of LER and 
LWR from the simulated test SEM images are very close to the true 
LER and LWR of the corresponding line from the edges generated 
through the Thorsos method. The mean absolute pixel error is close 
to zero in the low noise regime.

Figures 4-6 show additional results for three of the test images con-
sidered in Table 1. The edge images have been constructed from the 

Figure 5. (a) Original image with s = 1:2 nm, a = 0:7, x = 40 nm (b) Noisy image with a noise level of 5 electrons per pixels. (c) Predicted edge 
image. (d) Noisy image overlayed with edge image. (e) Left edge PSD; Palasantzas (blue), true edge (orange), predicted edge (green). (f) Right edge 
PSD; Palasantzas (blue), true edge (orange), predicted edge (green).
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■	 Some Chipmakers Sidestep Scaling, Others Hedge

Ed Sperling
The rising cost of developing chips at 7nm coupled with the reduced benefits of scaling have pried 
open the floodgates for a variety of options involving new materials, architectures, and packaging 
that either were ignored or not fully developed in the past.
The economics of developing these devices is shifting. Multiple reports and analyses point to 3nm 
design costs topping $1 billion, and while the math is still speculative, there is no doubt that the 
cost per transistor or per watt is going up at each new node. That makes it hard for fabless chip 
companies to compete.
How these constantly evolving architectures get designed, manufactured, and packaged isn’t entirely 
clear. What is clear is there is no shortage of new options emerging, and not all of them will work out. 
That makes it hard for foundries, equipment companies and materials suppliers to make long-range 
plans, which is why many are proceeding cautiously.
In the past, there was a roadmap and a clear direction for investing in the future of chip design through 
manufacturing. That roadmap no longer exists. Which approaches and technologies win, and which 
ones fail, is anyone’s guess. But each one of those options requires a substantial investment, and it’s 
hard to bet the bank when you don’t know how long those options will stick around.
https://semiengineering.com/some-chipmakers-sidestep-scaling-others-hedge/

■	 Automotive Electronic Systems to Grow 7% This Year and 6.3% 
Next Year, says IC Insights

David Manners
Sales of automotive electronic systems are forecast to increase 7.0% in 2018 and 6.3% in 2019, the 
highest growth rate in both years among the six major end-use applications for semiconductors, says 
IC Insights. Sales of automotive-related electronic systems are forecast to increase to $152 billion in 
2018 from $142 billion in 2017, and are forecast to rise to $162 billion in 2019. Furthermore, automotive 
electronic systems are expected to enjoy a CAGR of 6.4% from 2017 through 2021, again topping 
all other major system categories, based on recent findings by IC Insights.
Technology features that are focused on self-driving (autonomous) vehicles, ADAS, vehicle-to-vehicle 
(V2V) communications, on-board safety, convenience, and environmental features, as well as ongoing 
interest in electric vehicles, continues to lift the market for automotive electronics systems, despite 
some highly publicized accidents involving self-driving vehicles this year that were at least partly 
blamed on technology miscues. New advancements are more widely available onboard mid-range 
and entry-level cars and as aftermarket products, which has further raised automotive system growth 
in recent years.
In the semiconductor world, this is particularly good news for makers of analog ICs, MCUs, and 
sensors since a great number of these devices are required in most of these automotive systems. It 
is worth noting that the Automotive—Special Purpose Logic category is forecast to increase 29% this 
year—second only to the DRAM market, and the Automotive—Application-Specific Analog market is 
forecast to jump 14% this year—as backup cameras, blind-spot (lane departure) detectors, and other 
“intelligent” systems are mandated or otherwise being added to more vehicles. Meanwhile, memory 
(specifically, DRAM and flash memory) is increasingly playing a more critical role in the development 
of new automotive system solutions used in vehicles.
https://www.electronicsweekly.com/news/business/automotive-electronic-systems-grow-7-year-6-
3-next-says-ic-insights-2018-11/

■	 Solution for Next Generation Nanochips Comes Out of Thin Air

Researchers at RMIT University have engineered a new type of transistor, the building block for all 
electronics. Instead of sending electrical currents through silicon, these transistors send electrons 
through narrow air gaps, where they can travel unimpeded as if in space.
The device unveiled in material sciences journal Nano Letters, eliminates the use of any semiconductor 
at all, making it faster and less prone to heating up.
Lead author and PhD candidate in RMIT’s Functional Materials and Microsystems Research Group, 
Ms Shruti Nirantar, said this promising proof-of-concept design for nanochips as a combination of 
metal and air gaps could revolutionize electronics.
“Every computer and phone has millions to billions of electronic transistors made from silicon, but 
this technology is reaching its physical limits where the silicon atoms get in the way of the current 
flow, limiting speed and causing heat,” Nirantar said.
Research team leader Associate Professor Sharath Sriram said the design solved a major flaw in 
traditional solid channel transistors – they are packed with atoms – which meant electrons passing 
through them collided, slowed down and wasted energy as heat.
“This is a step towards an exciting technology which aims to create something out of nothing to 
significantly increase speed of electronics and maintain pace of rapid technological progress,” 
Sriram said.
https://electroiq.com/2018/11/solution-for-next-generation-nanochips-comes-out-of-thin-air/
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SPIE is the international society for optics and photonics, an educational 
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Photomask Japan
16-18 April 2019
PACIFICO Yokohama
Yokohama, Japan
	www.photomask-japan.org

SPIE Advanced Lithography
24-28 February 2019 
San Jose Marriott and  
San Jose Convention Center  
San Jose, California, USA

The 35th European Mask and  
Lithography Conference, EMLC 2019
17-19 June 2019
Hilton Hotel Dresden
Dresden, Germany

Corporate Membership Benefits include:
■	 3-10 Voting Members in the SPIE General Membership, 

depending on tier level

■	 Subscription to BACUS News (monthly)

■	 One online SPIE Journal Subscription

■	 Listed as a Corporate Member in the BACUS Monthly 
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 About the BACUS Group
Founded in 1980 by a group of chrome blank users wanting a single voice to interact with suppliers, BACUS has 
grown to become the largest and most widely known forum for the exchange of technical information of interest 
to photomask and reticle makers. BACUS joined SPIE in January of 1991 to expand the exchange of information 
with mask makers around the world.

The group sponsors an informative monthly meeting and newsletter, BACUS News. The BACUS annual Photomask 
Technology Symposium covers photomask technology, photomask processes, lithography, materials and resists, 
phase shift masks, inspection and repair, metrology, and quality and manufacturing management. 

Individual Membership Benefits 
include:
■	 Subscription to BACUS News (monthly)

■	 Eligibility to hold office on BACUS Steering Committee

www.spie.org/bacushome

You are invited to submit events of interest for this  
calendar. Please send to lindad@spie.org; alternatively, 

email or fax to SPIE.

h
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Join the premier professional organization  
for mask makers and mask users!
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